SYLLABUS PLAN FOR THE SESSION 2020-21 SUBJECT-PHYSICS CLASS-IX **TEXTBOOK: SCIENCE (NCERT)** | Months | Chapter | Sub Topics | Learning Outcomes | Practical / Projects | |--------|--------------------------------|--|---|---| | April | Motion | Describing motion, motion along a straight line, uniform and non-uniform motion, rate of change of motion, velocity & acceleration, graphical representation of motion, equations of motion (graphical method). | Differentiate between scalar and vector quantities Explain the difference between distance and displacement, speed and velocity with examples Derive the three equations of motion graphically. | | | May | Motion | Numerical based on equations of motion Uniform Circular motion. | explain uniform circular motion, and reason out that why it is known as an accelerated motion critically analyze the different types of motion. | | | July | Force and
Laws of
Motion | Balanced and unbalanced forces, first law of motion, inertia and mass, second law of motion, mathematical formulation of second law of motion. Third law of motion, | State Newton's Laws of
Motion with the help of real-
life examples Formulate the laws
mathematically and solve
numerical based on them | To study the third law of motion using two spring balances. | | | | Conservation of momentum. | | | | | | | |-----------|-------------------------|--|--|---|--|--|--|--| | August | Gravitation | Gravitation, Universal law of gravitation, importance of Universal law of gravitation, free fall, to calculate the value of 'g'. | Explain gravitational force and derive it between any two objects Define free fall and calculate the value of g | Art Integrated Project The Newtonian Toy Design a toy using waste materials which describes any one or more laws of Motion given by Newton. Present your toy and explain the concept in form of a video. | | | | | | September | Half Yearly Examination | | | | | | | | | October | Work & Energy | Work, Work done by a constant force, Energy, forms of energy, kinetic energy. | explain the scientific conception of work Calculate the amount of work done on an object define energy and classify mechanical energy into kinetic and potential energy. explain the concept of kinetic energy with the help of examples and derive its expression. | To determine the density of solid (denser than water) by using a spring balance and a measuring cylinder. | | | | | | November | Work &
Energy | Potential energy, potential energy of an object at a height, law of conservation of energy. Rate of doing work, commercial unit of energy-kWh. | explain the concept of potential energy with the help of examples and derive its expression. State the law of conservation of energy | Establishing the relation between the loss in weight of a solid when fully immersed in a) Tap water b) Strongly salty water with the weight of water displaced by it by | | | | | | | | | Define power and give its SI unit. Establish the relation between commercial unit of energy KWh and joules. | taking
solids. | at lea | st two | different | |----------|-------|---|---|-------------------|--------|--------|-----------| | December | Sound | Production of sound, propagation of sound, sound requires a medium to travel, sound waves as longitudinal waves, characteristics of a sound wave. | Visualize sound as waves and explain that sound cannot produce without a vibrating object. Explain the different characteristics of sound waves. | | | | | | January | | | Revision | | | | |